78 research outputs found

    Making Pre-trained Language Models both Task-solvers and Self-calibrators

    Full text link
    Pre-trained language models (PLMs) serve as backbones for various real-world systems. For high-stake applications, it's equally essential to have reasonable confidence estimations in predictions. While the vanilla confidence scores of PLMs can already be effectively utilized, PLMs consistently become overconfident in their wrong predictions, which is not desirable in practice. Previous work shows that introducing an extra calibration task can mitigate this issue. The basic idea involves acquiring additional data to train models in predicting the confidence of their initial predictions. However, it only demonstrates the feasibility of this kind of method, assuming that there are abundant extra available samples for the introduced calibration task. In this work, we consider the practical scenario that we need to effectively utilize training samples to make PLMs both task-solvers and self-calibrators. Three challenges are presented, including limited training samples, data imbalance, and distribution shifts. We first conduct pilot experiments to quantify various decisive factors in the calibration task. Based on the empirical analysis results, we propose a training algorithm LM-TOAST to tackle the challenges. Experimental results show that LM-TOAST can effectively utilize the training data to make PLMs have reasonable confidence estimations while maintaining the original task performance. Further, we consider three downstream applications, namely selective classification, adversarial defense, and model cascading, to show the practical usefulness of LM-TOAST. The code will be made public at \url{https://github.com/Yangyi-Chen/LM-TOAST}.Comment: Accepted to Findings of ACL 202

    Bridge the Gap Between CV and NLP! An Optimization-based Textual Adversarial Attack Framework

    Full text link
    Despite recent success on various tasks, deep learning techniques still perform poorly on adversarial examples with small perturbations. While optimization-based methods for adversarial attacks are well-explored in the field of computer vision, it is impractical to directly apply them in natural language processing due to the discrete nature of the text. To address the problem, we propose a unified framework to extend the existing optimization-based adversarial attack methods in the vision domain to craft textual adversarial samples. In this framework, continuously optimized perturbations are added to the embedding layer and amplified in the forward propagation process. Then the final perturbed latent representations are decoded with a masked language model head to obtain potential adversarial samples. In this paper, we instantiate our framework with an attack algorithm named Textual Projected Gradient Descent (T-PGD). We find our algorithm effective even using proxy gradient information. Therefore, we perform the more challenging transfer black-box attack and conduct comprehensive experiments to evaluate our attack algorithm with several models on three benchmark datasets. Experimental results demonstrate that our method achieves an overall better performance and produces more fluent and grammatical adversarial samples compared to strong baseline methods. All the code and data will be made public.Comment: Codes are available at: https://github.com/Phantivia/T-PG

    M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion

    Full text link
    In federated learning (FL), the communication constraint between the remote learners and the Parameter Server (PS) is a crucial bottleneck. For this reason, model updates must be compressed so as to minimize the loss in accuracy resulting from the communication constraint. This paper proposes ``\emph{M{\bf M}-magnitude weighted L2L_{\bf 2} distortion + 2\bf 2 degrees of freedom''} (M22) algorithm, a rate-distortion inspired approach to gradient compression for federated training of deep neural networks (DNNs). In particular, we propose a family of distortion measures between the original gradient and the reconstruction we referred to as ``MM-magnitude weighted L2L_2'' distortion, and we assume that gradient updates follow an i.i.d. distribution -- generalized normal or Weibull, which have two degrees of freedom. In both the distortion measure and the gradient, there is one free parameter for each that can be fitted as a function of the iteration number. Given a choice of gradient distribution and distortion measure, we design the quantizer minimizing the expected distortion in gradient reconstruction. To measure the gradient compression performance under a communication constraint, we define the \emph{per-bit accuracy} as the optimal improvement in accuracy that one bit of communication brings to the centralized model over the training period. Using this performance measure, we systematically benchmark the choice of gradient distribution and distortion measure. We provide substantial insights on the role of these choices and argue that significant performance improvements can be attained using such a rate-distortion inspired compressor.Comment: arXiv admin note: text overlap with arXiv:2202.0281

    Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models

    Full text link
    Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can parse natural queries about the visual content and generate human-like outputs. In this work, we explore the ability of these models to demonstrate human-like reasoning based on the perceived information. To address a crucial concern regarding the extent to which their reasoning capabilities are fully consistent and grounded, we also measure the reasoning consistency of these models. We achieve this by proposing a chain-of-thought (CoT) based consistency measure. However, such an evaluation requires a benchmark that encompasses both high-level inference and detailed reasoning chains, which is costly. We tackle this challenge by proposing a LLM-Human-in-the-Loop pipeline, which notably reduces cost while simultaneously ensuring the generation of a high-quality dataset. Based on this pipeline and the existing coarse-grained annotated dataset, we build the CURE benchmark to measure both the zero-shot reasoning performance and consistency of VLMs. We evaluate existing state-of-the-art VLMs, and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency, indicating that substantial efforts are required to enable VLMs to perform visual reasoning as systematically and consistently as humans. As an early step, we propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs. The first stage involves employing supervised fine-tuning of VLMs using step-by-step reasoning samples automatically generated by LLMs. In the second stage, we further augment the training process by incorporating feedback provided by LLMs to produce reasoning chains that are highly consistent and grounded. We empirically highlight the effectiveness of our framework in both reasoning performance and consistency.Comment: The data is released at \url{https://github.com/Yangyi-Chen/CoTConsistency

    A Data-Centric Solution to NonHomogeneous Dehazing via Vision Transformer

    Full text link
    Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. However, these solutions cannot maintain comparable performance when they are applied to images with non-homogeneous haze, e.g., NH-HAZE23 dataset introduced by NTIRE challenges. One of the reasons for such failures is that non-homogeneous haze does not obey one of the assumptions that is required for modeling homogeneous haze. In addition, a large number of pairs of non-homogeneous hazy image and the clean counterpart is required using traditional end-to-end training approaches, while NH-HAZE23 dataset is of limited quantities. Although it is possible to augment the NH-HAZE23 dataset by leveraging other non-homogeneous dehazing datasets, we observe that it is necessary to design a proper data-preprocessing approach that reduces the distribution gaps between the target dataset and the augmented one. This finding indeed aligns with the essence of data-centric AI. With a novel network architecture and a principled data-preprocessing approach that systematically enhances data quality, we present an innovative dehazing method. Specifically, we apply RGB-channel-wise transformations on the augmented datasets, and incorporate the state-of-the-art transformers as the backbone in the two-branch framework. We conduct extensive experiments and ablation study to demonstrate the effectiveness of our proposed method.Comment: Accepted by CVPRW 202

    The state of water and fat during the maturation of Cheddar cheese

    Get PDF
    Cheddar cheese predicted to develop into different quality classes has been evaluated by time domain Nuclear Magnetic Resonance, Thermogravimetric analysis and quantitative sensory analysis. The water and fat proton signals in the transverse relaxation decay curves have been deconvoluted. Proton transverse relaxation values for both the water and fat fractions decrease and the relative %age of the proton peak area, predominantly from the fat increases over a 450-day ripening period. The thermodynamic free water percentage increases during maturation. Water and fat attributes can distinguish between Cheddar cheese batches after 56 days. Cheese batches which have lower transverse relaxation values for the water and fat proton fractions and a higher relative %age of the proton peak area predominantly from fat at 56 days, mature after 270 days to be more yellow, rubbery and smooth, have a less sour and lingering aftertaste and are also harder to form into a cheese ball

    Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis, and LLMs Evaluations

    Full text link
    This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP. We find that the distribution shift settings in previous studies commonly lack adequate challenges, hindering the accurate evaluation of OOD robustness. To address these issues, we propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts. Then we introduce BOSS, a Benchmark suite for Out-of-distribution robustneSS evaluation covering 5 tasks and 20 datasets. Based on BOSS, we conduct a series of experiments on pre-trained language models for analysis and evaluation of OOD robustness. First, for vanilla fine-tuning, we examine the relationship between in-distribution (ID) and OOD performance. We identify three typical types that unveil the inner learning mechanism, which could potentially facilitate the forecasting of OOD robustness, correlating with the advancements on ID datasets. Then, we evaluate 5 classic methods on BOSS and find that, despite exhibiting some effectiveness in specific cases, they do not offer significant improvement compared to vanilla fine-tuning. Further, we evaluate 5 LLMs with various adaptation paradigms and find that when sufficient ID data is available, fine-tuning domain-specific models outperform LLMs on ID examples significantly. However, in the case of OOD instances, prioritizing LLMs with in-context learning yields better results. We identify that both fine-tuned small models and LLMs face challenges in effectively addressing downstream tasks. The code is public at \url{https://github.com/lifan-yuan/OOD_NLP}.Comment: Accepted to NeurIPS 2023 Dataset and Benchmark Track. Code is available at \url{https://github.com/lifan-yuan/OOD_NLP

    Selection of potential molecular markers for cheese ripening and quality prediction by NMR spectroscopy

    Get PDF
    © 2020 Elsevier Ltd Predicting cheese quality as early as possible after ripening is important for quality control in the cheese industry. The main aim of this study was to investigate potential metabolites for predictive models of Cheddar cheese quality. Metabolites in aqueous extracts of Cheddar cheese were identified by Nuclear Magnetic Resonance. The metabolites were used to measure the kinetics of up to 450 days ripening in Cheddar cheese. The proton ratios of citrulline and arginine relative to the overall proton content of the aqueous extract are the most important indices for assessing the ripening of Cheddar cheese. The ratios of citrulline and arginine decrease by 59% and 69%, respectively, after 450 days ripening. In comparison to the premium batch B cheese, batch C which was predicted to attain a lower quality level, had higher serine and β-galactose as well as lower lactic acid levels and also had a less mature sensorial profile. Tyrosine, tyramine and lysine are highly correlated with mature Cheddar cheese sensory attributes. β-Galactose and glycerol are correlated with young Cheddar cheese sensory attributes. These metabolites can be used to predict cheese quality

    From Adversarial Arms Race to Model-centric Evaluation: Motivating a Unified Automatic Robustness Evaluation Framework

    Full text link
    Textual adversarial attacks can discover models' weaknesses by adding semantic-preserved but misleading perturbations to the inputs. The long-lasting adversarial attack-and-defense arms race in Natural Language Processing (NLP) is algorithm-centric, providing valuable techniques for automatic robustness evaluation. However, the existing practice of robustness evaluation may exhibit issues of incomprehensive evaluation, impractical evaluation protocol, and invalid adversarial samples. In this paper, we aim to set up a unified automatic robustness evaluation framework, shifting towards model-centric evaluation to further exploit the advantages of adversarial attacks. To address the above challenges, we first determine robustness evaluation dimensions based on model capabilities and specify the reasonable algorithm to generate adversarial samples for each dimension. Then we establish the evaluation protocol, including evaluation settings and metrics, under realistic demands. Finally, we use the perturbation degree of adversarial samples to control the sample validity. We implement a toolkit RobTest that realizes our automatic robustness evaluation framework. In our experiments, we conduct a robustness evaluation of RoBERTa models to demonstrate the effectiveness of our evaluation framework, and further show the rationality of each component in the framework. The code will be made public at \url{https://github.com/thunlp/RobTest}.Comment: Accepted to Findings of ACL 202
    • …
    corecore